定积分

缩写:djf

拼音:dìng jī fēn

解释:微积分的重要概念。德国数学家黎曼首先给予严格表述,故又称黎曼积分”。设函数f(x)在[a,b]上有界,把区间[a,b]任意分成n个小区间[x0,x1],[x1,x2],…[x﹏-1,x璶],各个小区间的长度为δx璱=x璱-x﹊-1(i=1,2,…,n)。在每个小区间上任取一点ξ璱作和s=σni=1f(ξ璱)δx璱,记λ=max{δx1,δx2,…,δx璶},若不论对[a,b]怎样分法,也不论在小区间[x﹊-1,x璱]上点ξ璱怎样取法,只要当λ→0时,和s总趋于确定的极限i,则称极限i为函数f(x)在区间[a,b]上的定积分,记作А要琤璦f(x)dx,其中f(x)称为被积函数,x称为积分变量,a、b分别称为积分下限和上限,[a,b]称为积分区间。

更新时间:2024-11-26 10:25

今日热门汉语